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COMMENT 

The role of fluctuations in thermodynamics: a critical answer to 
Jaworski’s paper ‘Higher-order moments and the maximum 
entropy inference’ 

Giovanni Paladin and Angelo Vulpiani 
Dipartimento di Fisica, Universiti di Roma ‘La Sapienza’, P le A Moro 2, 00185 Roma, 
Italy and GNSM-CISM, Roma, Italy 

Received 18 May 1987, in final form 7 September 1987 

Abstract: We show that energy fluctuations, and thus the higher-order moments of energy, 
contain essential information and cannot be neglected even in the thermodynamical limit. 
In contrast with some of Jaworski’s statements, we point out how all the thermodynamical 
properties depend in a crucial way on the fluctuations on the basis of realistic physical 
assumptions. Indeed, phenomenological thermodynamics allows one to conclude that the 
Gibbs canonical distribution is the only possible probability distribution which does not 
violate the second principle. It follows that the knowledge of the free energy as a function 
of temperature p-’ is equivalent to that of the probability law governing fluctuations. This 
probability law is therefore a characteristic of a body which can be investigated by measuring 
either energy moments at fixed p or the mean values of entropy and energy at varying p. 

About thirty years ago, Jaynes (1957a, b) formulated a principle of maximum entropy 
as a criterion to pick up the probability distribution which is best suited for a 
macroscopic description of physical systems. Following this principle the equilibrium 
statistical mechanics can be interpreted as a special kind of statistical inference. In 
practice, the result of the maximum entropy procedure depends on the constraints that 
are imposed. The canonical ensemble, for example, follows by the maximisation of 
the Shannon entropy (Shannon 1948) fixing the mean energy, the grand canonical 
ensemble fixing also the mean number of particles. Moreover, the results are determined 
by the choice of the variables since the Shannon entropy is not invariant under a 
change of variables. Note that the principle of maximum entropy does not a priori 
establish what the essential information and the good set of variables are. 

We do not want to discuss here the Jaynes approach in its general aspects and 
implications, but just limit ourselves to some considerations originated by a recent 
paper in this journal. Jaworsky (1987) has discussed the maximum entropy inference 
employing the higher-order moments of energy. It is well known that maximising 
entropy with respect to the canonical variables ( p ,  q )  with the constraint ( H )  = U one 
obtains the Gibbs weight p G a  exp( - p H ) .  It is thus natural to contemplate the possible 
role of (H’), ( H 3 )  and so on. If one in fact knows (e.g., by experimental measurements) 
the first n successive moments (Hi)= Ui, then the Shannon entropy is maximised by 
the generalised Gibbs distribution 
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where Z,(a,, a z ,  . . . , a,) = exp(-C a , H ’ )  dp dq, and the parameters a, are Lagrange 
multipliers such that 

U, = -a In(Z,,)/aa,. ( 2 )  

The Shannon entropy of p is 

u = In Z,, + ai U, 

which satisfies the relations: 

a ,  = a u l a  U,. 

(3) 

(4) 

We here use unities for which the Boltzmann constant KB = 1, and we have to stress 
that the Shannon entropy U in general differs from the statistical entropy S defined 
as the microcanonical entropy computed at H =  U. Let us now consider a system 
composed of N particles in a volume V, and Hamiltonian H,. In the case of finite 
N the generalised Gibbs state is pN = exp(-2 a,,,HA)Zpl and we shall denote the 
densities U, = lim,-% U,,N/  N, as well as s = Iim,+= S,/N, while it is useful to define 
a set of variables p, which do  not vanish in the thermodynamic limit as 

a , , N  = p , /  NI-’ + O( N - ’ )  (5) 

with p ,  = p if n = 1. 
Jaworski pointed out that the contribution arising from the knowledge of the 

higher-order energy moments U, to statistical entropy is negligible in the thermodynami- 
cal limit N + c ~ ,  N /  V ,  = constant, since in this limit the a, vanish for i # 1 and the 
statistical entropy density s( p )  of a generalised distribution coincides with the entropy 
density s ( p c )  of the Gibbs distribution. For finite N one therefore has: 

(6) 

Jaworski then claims that the information contained in the moments is not essential 
from a thermodynamic point of view and can be neglected in a maximal entropy 
inference of the statistical weight because ‘it would be difficult to agree tha t . .  . all 
thermodynamic properties depend in some essential way on energy fluctuation’. We 
do not believe that this is true. The main points of our remark are as follows. 

(i) The actual dependence of energy U and statistical entropy S on the temperature 
T is a trivial consequence of the definition of microcanonical entropy (see (7 )  below) 
and does not depend on the detailed form of p. This is a simple extension of Jaworski’s 
results. 

( i i )  The parameters p, are shown to be uniquely determined assuming the validity 
of usual thermodynamics. It is in fact possible to show that the only distribution which 
does not violate the second law of thermodynamics is the Gibbs distribution, and so 
PI  should be identically zero for i # 1. 

We want to stress that point (ii) disagrees with Jaworski’s approach on the basis 
of physical grounds (essentially the second principle) even if all his results are 
mathematically correct. In the conclusions of this comment we shall briefly discuss 
the possibility of introducing a generalised canonical distribution p # pG satisfying a 
‘generalised second principle’ but only in some particular systems (Grad 1952). 

Let us now consider a large number of different samples (‘realisations’) of the same 
system with N particles. A sample can of course be regarded just as a ‘small’ part of 
a larger system. Each sample is then characterised by its energy per particle, say x, 
and we can group all the realisations with energy per particle between x and x + d x  

s, ( P I  = SI, ( P G )  + o( NI. 
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in the same set Cl(x). The number H, of realisations belonging to n ( x )  is assumed 
to increase exponentially with N as 

exp(s(x)N) ( 7 )  

where s (x)  is the microcanonical entropy per particle corresponding to the energy x. 
We can now compute the partition function of the Gibbs distribution integrating 

over x: 

z,(P) = J H, exp(-pxiV) dx = exp[N(s(x) - px)] dx. J (8)  

In the limit N -f cx only one set gives a relevant contribution to ZN. By means of the 
steepest descent method one in fact obtains 

Z N ( P )  = exp(-Pf(P)N) 

p f  ( p )  = min,[px - s(x)]  = pu - s(  U )  

with 

(9) 

where the minimal condition in the Legendre transformation (9) implies 

The probability of finding a sample with x f U vanishes for large N as 

P(X) = z-' exp(-PxN) Hxa exp[-PN(J/p(x) -f(P))I (11) 

where CC, = px - s (x)  ~f and f is the free energy per particle of the system. We have 
derived these well known results in order to point out that the hierarchy of sets n ( x )  
can be investigated at varying p, even if they give a negligible contribution to the state 
function U and s. Indeed, one easily recognises that each temperature selects a particular 
energy x = U(@) which minimises (clp(x). If one knows a priori the statistical weight, 
it follows that the shape of P(x) ,  or equivalently the values of the moments (x ' )  = U,, 
are fully determined by the knowledge of the free energy as function of p, i.e. of S ( p )  
and U @ ) .  We can repeat all the above arguments with a generical statistical weight 
p a e x p (  -r( U, x)N) ,  where in the Jaworski paper the particular form =I; p,x '  is 
considered. The result is straightforward as the saddle point estimate of the partition 
function is given by the x value which minimises T ( u ,  x) - s(x)  and the temperature 
T = p-'  is defined by the standard relation (10). Since s(x)  is given by ( 7 ) ,  S( T) and 
U ( T )  as functions of T do not depend on the particular form of r. Moreover, since 
(H') = (H)'( 1 + o( N I ) ) ,  one sees that v(p) = a(p,) - o( N ) .  

It is, however, clear that different forms of r lead to different fluctuations. Jaworski 
therefore argues that the actual r can be decided only on experimental grounds by 
measurement of the energy moments even if, in his opinion, the question is rather 
useless since I' does not affect the fundamental thermodynamical relations. 

Let us note that fluctuations can nevertheless be observed in many interesting 
circumstances and are a relevant property of a body. This implies that there is only 
one statistical weight which can reproduce real thermodynamics. Moreover, Szilard 
proved long ago in his dissertation thesis that the second law of thermodynamics gives 
information about fluctuations of microscopic parameters and not only on their mean 
values (Szilard (1929,  for a similar approach to foundations of thermodynamics see 
Mandelbrot (1962, 1964)). 
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For example, the Gibbs distribution assures that the energy fluctuation variance is 
related to the specific heat by the standard relation 

( (x - U)’)= CyT2/  N 

with cv =du/dT.  Szilard (1925) proved that only the variance given by formula (12) 
is compatible with the second law, while for n = 2 in (1) we have for such an abnormal 
statistics p # pG,  N ( ( x  - U)’)< cvT2. If one had a variance which differs from (13), 
such as the variance of the generalised distribution of Jaworski, then it would be 
possible to change the average internal energy density of a set of systems described 
by p after thermal contacts with another set at the same temperature described by pG; 
see Szilard (1925) for details. He in fact noted that even if for a particular cyclic 
process one can have a finite probability of getting an entropy decrease, the classical 
postulate of thermodynamics assures one that this is not possible when the process is 
repeated on a large number of realisations. In other terms, the global entropy cannot 
decrease and it is therefore not possible to use fluctuations for constructing a perpetuum 
mobile of the second kind. This assumption which is at the basis of phenomepological 
thermodynamics is violated for all the statistical distributions except the canonical 
Gibbs distribution. On the contrary if the energy statistics is given by pG we cannot 
change it without any compensation. Szilard (1925) has shown that the work necessary 
for bringing a body from pG to an abnormal statistics p is in general given by 

w- T ( a ( p G ) - a ( p ) )  (13) 

where a( p )  = -(ln( p ) ) ,  and a( po) = S = max, a( p ) .  This is the price paid to a ‘Max- 
well devil’ in order to change fluctuation statistics. Let us recall that a( pG)  - U( p )  = 
o(N)>O.  Nevertheless this small difference is sufficient to violate the second law. 
Indeed if p # pG were an equilibrium state, then one could bring with a small work 
W, pG to p and so extract an arbitrarily large amount of work MW, performing a 
number M of cycles with reservoirs with statistics pG at the same temperature as 
defined by (10). 

This indicates the relevance of fluctuations since it points out that two bodies are 
in thermal equilibrium only if their distributions coincide. Moreover, the Gibbs 
distribution is the only admissible distribution, assuming that an equilibrium state, at 
fixed volume and number of particles, is fully characterised by the temperature. 

The idea of ‘generalised thermodynamics’ [Jaworski 1981,19871 thus is in disagree- 
ment with the usual formulation of the second law. Indeed, in the generalised thermody- 
namics S Q / T  is not an exact differential and a ‘generalised’ second law has to be 
formulated with the new exact differential a,SQ, where SQ, are forms of heat related 
to U, and SQ,=SQ [Ingarden and Kossakowski 1965, Jaworski 19811. It seems to 
use that in this approach two bodies are in equilibrium if the two sets of all their 
‘temperatures’ P I  coincide, and that the equality of their temperatures T is not sufficient. 
In this sense the Pi  should be relevant, even if they do not affect the state functions 
S a n d  U. 

It is worth stressing that if one assumes the possibility of deriving the statistics of 
an open system (i.e. the canonical distribution, as usually assumed) from the ergodic 
hypothesis on a closed system described by the microcanonical measure, then it follows 
that the statistics of an open system (considered as a small part of the closed one) has 
to depend only on one parameter. On the contrary, the generalised canonical distribu- 
tion p # pG involves different constraints which should imply, in the closed systems, 
conservation laws beyond the energy conservation. It therefore follows that such a 
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distribution cannot be obtained from the microcanonical measure, which implies one 
conservation law. The statistical mechanics of particular systems with more than one 
conservation law was actually constructed by Grad (1952). In these cases the probability 
distribution has the form exp(-I;, g,(q,  p ) /  T,)  where g, are the conserved quantities 
of a closed system and T, are the corresponding ‘temperatures’. This form is similar 
to (1) but here f; are given by the dynamics and the whole set of T, is relevant, since 
two states are in equilibrium only if the two sets of ‘temperatures’ coincide (Grad 1952). 

Let us also remark that, following Mandelbrot (1962, 1964), it is possible to derive 
all the phenomenological thermodynamics in terms of mathematical statistics, assuming 
that the equilibrium state is described by the only probability distribution with a single 
scalar sufficient statistics. In terms of the maximum entropy formalism, one has to 
conclude that there is only a relevant parameter, the mean energy, and that fluctuations 
are not negligible details since they are fully determined by it. 

We thank B B Mandelbrot and L Peliti for useful remarks. 
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